[52] L. R. Castilho and R. A. Medronho, “Cell retention devices for suspended-cell perfusion
cultures,” (in eng), Adv. Biochem. Eng./Biotechnol., vol. 74, pp. 129–169, 2002.
[53] S. M. Woodside, B. D. Bowen, and J. M. Piret, “Mammalian cell retention devices
for stirred perfusion bioreactors,” (in eng), Cytotechnology, vol. 28, no. 1–3,
pp. 163–175, Nov. 1998.
[54] O. W. Merten, J. V. Kierulff, N. Castignolles, and P. Perrin, “Evaluation of the new
serum-free medium (MDSS2) for the production of different biologicals: use of
various cell lines,” (in eng), Cytotechnology, vol. 14, no. 1, pp. 47–59, 1994.
[55] M. Leong, W. Babbitt, and G. Vyas, “A hollow-fiber bioreactor for expanding HIV-
1 in human lymphocytes used in preparing an inactivated vaccine candidate,”
(in eng), Biologicals, vol. 35, no. 4, pp. 227–233, Oct. 2007.
[56] B. Sun et al., “Production of influenza H1N1 vaccine from MDCK cells using a
novel disposable packed-bed bioreactor,” (in eng), Appl Microbiol. Biotechnol.,
vol. 97, no. 3, pp. 1063–1070, Feb. 2013.
[57] S. Kiesslich, J. P. Vila-Chã Losa, J. F. Gélinas, and A. A. Kamen, “Serum-free
production of rVSV-ZEBOV in Vero cells: Microcarrier bioreactor versus scale-
X™ hydro fixed-bed,” (in eng), J. Biotechnol., vol. 310, pp. 32–39, Feb. 2020.
[58] H. P. Lesch et al., “Process Development of Adenoviral Vector Production in Fixed
Bed Bioreactor: From Bench to Commercial Scale,” (in eng), Hum. Gene Ther., vol.
26, no. 8, pp. 560–571, Aug. 2015.
[59] R. Rajendran et al., “Assessment of packed bed bioreactor systems in the production
of viral vaccines,” (in eng), AMB Express, vol. 4, p. 25, 2014.
[60] V. Cortin, J. Thibault, D. Jacob, and A. Garnier, “High-Titer Adenovirus Vector
Production in 293S Cell Perfusion Culture,” Biotechnology Progress, vol. 20, no. 3,
pp. 858–863, 2004. 10.1021/bp034237l
[61] Y. Wu, T. Bissinger, Y. Genzel, X. Liu, U. Reichl, and W.-S. Tan, “High cell density
perfusion process for high yield of influenza A virus production using MDCK sus-
pension cells,” Appl. Microbiol. Biotechnol., vol. 105, no. 4, pp. 1421–1434, 2021.
[62] J. Coronel, G. Gränicher, V. Sandig, T. Noll, Y. Genzel, and U. Reichl, “Application
of an inclined settler for cell culture-based influenza A virus production in perfusion
mode,” (in eng), Front. Bioeng. Biotechnol., vol. 8, p. 672, 2020.
[63] H.-J. Henzler, “Kontinuierliche Fermentation mit tierischen Zellen. Teil 2.
Techniken und Methoden der Zellrückhaltung,” Chemie Ingenieur Technik, vol. 84,
no. 9, pp. 1482–1496, 2012.
[64] P. Himmelfarb, P. S. Thayer, and H. E. Martin, “Spin filter culture: the propagation
of mammalian cells in suspension,” (in eng), Science (New York, N.Y.), vol. 164,
no. 3879, pp. 555–557, May 1969.
[65] A. Nikolay, Intensified Yellow Fever and Zika Virus Production in Animal Cell
Culture, 2020.
[66] L. R. Esclade, S. Carrel, and P. Péringer, “Influence of the screen material on the
fouling of spin filters,” (in eng), Biotechnol. Bioeng., vol. 38, no. 2, pp. 159–168,
Jun. 1991.
[67] Y. M. Deo, M. D. Mahadevan, and R. Fuchs, “Practical considerations in operation
and scale-up of spin-filter based bioreactors for monoclonal antibody production,”
(in eng), Biotechnol. Prog., vol. 12, no. 1, pp. 57–64, Jan-Feb. 1996.
[68] B. Maiorella, G. Dorin, A. Carion, and D. Harano, “Crossflow microfiltration of
animal cells,” Biotechnol. Bioeng., vol. 37, no. 2, pp. 121–126, 1991.
[69] R. van Reis, L. C. Leonard, C. C. Hsu, and S. E. Builder, “Industrial scale harvest of
proteins from mammalian cell culture by tangential flow filtration,” Biotechnol.
Bioeng., vol. 38, no. 4, pp. 413–422, 1991.
170
Bioprocessing of Viral Vaccines